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ABSTRACT

A plan of successive approximations is outlined for handling the
equations of the three-dimensional problem in elasticity for shells of
revolution with regions of rapidly varying thickness along the conceptual
lines of a technique proposed by 0. G3hner. Attention is confined to

essentially cylindrical shells with regione of rapidly varying thickness,

e.g., circumferential notches or grooves. For a restricted but useful
class of loadings, plane biharmonic stress functions can be utilized. The
first two orders of theory are explicitly formulated in the framework of
analytic functions of a complex variable.
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I. INTRODUCTION

Occasionally, the neced arises for the analysis of moderately thick
shells with rapidly varying wall thickness. Local stress concentration
becomes the prihary concern in certain cases rather than the averaged
behavior approximated by conventional thin shell analysis. Clearly the
determination of such information requires a careful consideration of the
equations of thr:e-dimensional elasticity theory.

In this repcrt, we initially consider the class of moderately thick
shells of revolution under axially symmetric loadings, i.e., the deformation
will be axially symmetric. The local effects of geometrical irregularities
in the wall thickness (e.g., circumferential grooves or nodes) will be of
prineipal concern. Although the corresponding problem class in three-
dimensional elasticity is well-known, for example Reference 1, exact
solutions in general are extremely difficult to obtain. The plan of analysis
therefore consists in utilizing the relative thinness of the shell to
systematically approximate the three-dimensional equations.

A plan of successive approximations, conceptually due to 0. G3hner, 3
is adopted. The choice of the order of approximation is obviously sensitive
to the loadings considered. A particular choice is considered in this
report leading to a structure permitting the use of plane biharmonic
functions.

It ies shown that this plan is suitable for handling a restricted but
useful class of loadings of cylindrical shells with rapidly varying thick-
ness. In particular, the zero'th order solution supports Neuber's assertion?
that when the shell is very thin for a class of applied loadings the problem
can be considered as one of plane strain. The first two orders of solution
ocan be explicitly formulated in the framework of analytic functions of a
complex variable.

II. FORMULATION IN TERMS OF SUCCESSIVE APPROXIMATIONS

For the problem class of axially symmetric deformation, it will be
convenient initially to review the formulation in terms of cylindrical
coordinates (r, 6, z) where z is the axis of revolution. Assuming no body
forces, it is well-known, e.g., Reference 1, that the equations of equilibrium
are

Tevr * Tes,s * (ar - a,)/r =0
(1)

Tl‘l,l‘ '00'". + Tl‘l/r =0

where an independent variable appearing as a subscript and following a
comma denotes partial differentiation with respect to that variable. The
compatibility equations for this case are
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V’a, - 2(o,- a,)/r' +0,,../(1 v) = 0,

Vio, ¢ 2(0, - o,)/r3 ¢ 0, /r(1 ¢+ V) =0, (2)
2
V’O’. * Q’../(l +v) =0,

Ve = Tea/Tt 4 0 /(1 ¢ V) =0

where

VE = 3%/3v? + (1/r)3/3r + 9%/328,

Qe (o, ¢0y +0,)/(1 V),

and v denotes Poisson's ratio.

A

The systems (1) and (2) can be replaced by a formulation in terms of
a single stress function, ¢, as proposed by Love,* by defining

Q

.o OF -8,

[VV’¢ - ¢r/r]|’

Q.
@
]

(3)

q
»

2 [(2 - v)Vis - ¢,,],;

L ]
L ]

rs [(1 - V)v’¢ - ¢ll]f’
where
Vivig . 0.

{In (3), subscript notation denotes partial differentation of the stress
funotion &(r, z).)

Let us now introduce the new coordinates &, 7 defined by
£=r-R, ez (4)

where R is an appropriately chosen fixed radius of the shell. For the
present problem class, i.e., cylinders of variable thickness, we consider
R as independent of r and z. The previous systems can now be considered
in terms of the £, m coordinates. For example, the equations of equili-
brium and compatibility have the forms

et Tenyn ? (0f - og)/(£ + R) =0, (1)
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A’? + 0},(/(5 +R) - 2(0’ - ao)/(f +R)Y nte;/(l +v) =0, (2')

where A = 3t/3£% + 23/3mt.

G3hner's plan of successive upproximations depends on the validity of
tha expressions

/(€ + R) = (UR) E (- €/R),

(s)
/€ + R)Y = (1/R)® £ (ne1)(- £/R)".

We shall henceforth confine our attention to regions where the expansions
(6) can be considered valid. Thus, the expansions (5) will be considered
in (1') and (2') and a plan of successive approximations to the system
will be defined. In particular, if o is the generic symbol for the
stresses, it is assumed that

o= -goa"’, (6)

where the superscript denotes the order of the approximation.

In the method of successive approximations, the plan of approximation
is olearly not unique. Furthermore, a rigorous assessment of the validity
of any given plan ie generally unfeasible. On the other hand, several
minimal requirements are obvious. The plan should lead to a systematic
satisfaction of equilibrium and compatibility at least in an asymptotic
sense. PFurthermore, each order of solution should correspond to a well-
defined mathematical system of equations. Finally, a reasonably accurate
approximation of the prescribed load conditions should be possible.

We propose the following particular plan of successive approximatiod:
For the n'th order approximation with leading components o!®*!, terms con-
taining £*/R**! explicitly in (1') and (2') will be neglected. Thue, the
gero'th order approximation corresponde to the system

(0} tor (o) (o)
Te €t Tan g 0, 7

€n ¢ * aﬂo" 0,

() (0)

&g + Dge/(1 4 v) =0, t0," o, (7)
- (0) 1) (o) (o)
Aa" * Q,W/(l + v) =0, ATh + n’!n/(l + v) = 0,
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For n = 1, the corresponding system is

(1) .» (1) (o) IOD
Oese t Ten ot (o- - })/R = 0,
(8)
1) (1) (L 1]
T"'" + U".ﬂ ‘n /R - 0.

etc.

The plan can be conveniently summsrized in terms of stress functions.
Guided by the atructure of the stress function (3), it is a straightforward
matter to determine a system of stress functions compatible with the pre-
teding plen of successive approximation. In fact, the n'th order approxima-
tion can be replaced by

(s) tj=1)

o . Eamr" - Fe (v/R) : Fe (- g/a)"’]ﬂ.

(n) (J-1)

R P (R R P 7 ) ¥

(s} (j=-1)

e ve erg 0 ERNC om ),

Ten Er:;' -wr'™ - ), 3 F;j Y- :/a)"’/ﬁ]e.

n-o’l'z,.'..
where F'4) (£,7) = 0 if i<0 and

2™ o (e/m) g arg Y (- em)!

(10)
(a=i=9)

e (€A /2R E (tea) (seur T Y em) - o

- (/8" ) z (1+41)F g,

nes 0.1,3,....

The plan of approximation is not yet complete. Although a procedure
has been invented for the systematic consideration of equilibrium and
compatibility, there is no assurance that each system is well-defined and
that reasonable approximetion of the applied loads can be realised. 1In
order to study the complete structure of each system, it is necessary to
consider the matter of boundary conditions to be imposed on the individual
systems. Therefore the applied load or possible systematic approximations
of the applied load must be investigated.

-6-
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III. THE ZERO'TH ORDER THEORY

For n = 0,  (9) and (10) yield

(o) (0) (o)
¢ '[“AF ‘Fec]n'

(o) (o) (s)
0" L va" + O'" N

(11)
a;n . [(1 } v)AF” . F;;t]
R CHETE P
where
AAF“” - o. (12)

Although this system is apparently consistent with the well-known problem
of plane strain, such a conclusion cannot be immediately arrived at with-
out further consideration of the applied load conditions.

In Figure 1, the force resultants T_ ds and T, ds per unit of circum-
ference acting on the arc ds is shown where it is assumed that the force
is exerted by the material to the left on the material to the right pro-

ceeding from A’ to B’.

&
AI
ds T‘ ds
N
B Tn ds
1
n
FIGI_]RE b
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From equilibrium,

T, * o, 8inf + 7, cosf = -0, a¢/ds + Teq dn/ds, (13)

Ty « op cosB ¢+ 7, eind = o, dn/de - T, d¢&/ads. (14)

We now define as an additional part of our plan of successive
approximations,

® () o t§

Tom 2T o Tem 3, Te (15)
where
T;" = 4v;" d&/ds + T;;' dn/ds, n = 0,1,2,... ,
(s) il’ (n) CL (19)
T, =0, dn/ds - Ten d¢/ds, n *=0,1,2 ... .
Thus,

(o) (o) (e)

e ar /e - (1 - v)[AF;°’ a€/ds - oF,

an/aa], (17)

L a1 (18)

Consider now the resultant forces, Rﬂ and R, acting on the surface
generated by the arc A'B’. R, vanishes by symmetiry, whereas

R, = 2n [JR + £) T, ds. (10)

If the arc A’B’ is a closed contour with respect to the £n-plane, then R"
should vanish as B’ coincides with A’ from a consideration of equilibrium.
If T  is approximated by T!®) and substituted in (19), it is easily shown
that R_ does not vanish in general for a closed circuit., It is therefore
clear that a meaningful definition of R_ must be given to each order of
theory allowing for the order of approx?mation to the equilibrium state.
A similar argument can be made for the displacements and the resultant
moments.

A well-defined zero'th order theory will now be coneidered. We
sssume the stresses of the zero'th order theory are defined by (11) and
(12). The function F!®'(£,7) and its fourth order partial derivatives are
therefore assumed to exist at all interior points of the region described
in the £{7m-plane. Consider

2 ds, (20)

Y B’ (o)
n " {' Tn

e A 4 Lk B A i he e LA L




o) B'_(0)
Pe - {' Tl d" (81)

where T!®! and T!*' are defined by (17) and (18). For any closed contour
A'B’ (bgunding'a simply connected region of the material in the £n-plane),
P;” and P!®' vanish due to the continuity of F'® and its third order

partial defivatives. Thus, (11) and (12) coupled with (17) and (18) imply
a system of applied loads whose resultant force vanishes from a plane point
of view. A similar result follows when the resultant moment of the applied

load is considered.

It has thus been shown that for the plan of successive approximation
outlined above, the zero'th order approximation implies a system of applied
loads which is self-equilibrating in the plane sense. It would be in-
oonsistent therefore to attempt to use this particular plan of approximation
for loading systems which violate this condition to the firet order, e.g.,
internal pressure acting on e cylindrical shell. Therefore, we henceforth
restrict the class of applied loads to those which are self-equilibrating
in the plane sense to the first order.

Several details are still necessary to correlate the zero'th order
theory with the original three<dimensional problem. The force resultant
R, defined by (19) will now be considered as

E (KR

R'I-‘.. "

. (22)

Therefore, a compatible definition of R%" with the zero'th order theory is

R, =zR [T, da. (23)

Finally, we assume the radial and axial displacement components u and
w can be expressed as

ue 3 u ,we I w', (24)

It will be recalled that for the zero'th order theory,

A e ot o

Therefore, from Hooke's law and the well-known strain-displacement relations
in oylindrical coordinates,




w2 e 1=t - v e e,
E Bw“’/‘an « (1 - v’)o',‘.,. -v(l ¢ v)cr“’, " (26) ’
G(au'"" /am + ow'*'28) = 7,0, .

where E is Young's modulus and G = E/2(1 + v). Thus,

26 ' g « 2lh (27) '
26 ' fom = (1- AR, ¢ Fypr. .
Apart from rigid body motions,
26 2. -F";',
/ (28)

26 w“’ = (1 - 2v)AF“ + F":..

IV. THE ORDER OF THEORY, n = 1

For orders of theory n>l1, the stress functions F'"(f,n) are no longer
plane biharmonic in general. On the other hand, the application of plane
biharmonic functions can be preserved provided a particular integral of (10)
is found for each order of theory. In general, the determination of the

particular integrals requires a knowledge of the preceding orders of
solution.

Fortunately, the particular inteqral for the order n = 1 can be found

directly. 1In fact, for ne 1, {-£/R)F'®) /2 ig an integral of (10). There-
fore, the function G'!! (£,7) is defined as

i & G

F(H. G'”- fF"’/ZR. (39) .
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Then,
,:n . Evmm - ;;» . varm/aR . gr":'/an . ’2"/‘,‘3‘»'

c:n_: vAG‘” . va!'"’/?.R . ’:"/Rlv
' (30)

0;" .[}1 - y)AG‘l’o G;;' -(1- V)EAF..’/ZR - fr::'/zn]'v

(R} (i . 1) () ()
e = [Gee - o' - emyg'/mm o vear'' /28],

and
mae'' .o (s1)

The corresponding stress resultants are

(1 (1)

()
T, =-% d&/ds + Ten dn/ds

(1)

- - 4G, /88 - (1 - v)[Ac'"

. a/as - m;”dn/daﬂ (s2)

- en,*' e -([ryy - var 'Y an/2rds,

(1) (1) (1)
T, =0, dn/ds - Ten df/ds

.- d[c;;' - vee''")/ae - £r;* /2R (33)

te) () (o)
+ P dn/Rds + [F“ - VvAF ]df/sza.

An interesting mathematical dilemma occurs from a consideration of the
determinancy of the solution. In general, a logical definition of T!!! and
Té” would lead to a plane self-equilibrating set of prescribed loads. For
oxample, if T}®' = T, and Ti*) = T on the boundary, the natural choice
for the boundary oonﬁitions for the order of theory n = 1 would be
1) « 741} o 0 which corresponds, of course, tc a plane self-equilibrating
n}otom of applied loads. On the other hand, it is a simple matter to show
that in general T'!!! and T}” as defined by (32) and (33) are not self-
equilibrating in the plane sense. Although the portions of (32) and (33)
involving G!1! (#,1) correspond to a self-equilbrating load system in the
plane sensd by arguments similar to those of Seotion 3, it can easily be
shown that the remaining portions involving the gero'th order solution in
general violate the conditions of plane equilibrium. Since the flexibility

-11-

R B s G e b IS 3 v




et G % ey aof e A% 4 Ben e

of the solution resta in the determination of G'!!(£,n), clearly from a
precise standpoint, G!1!(£,n) is indeterminate.

The difficulty described above is common to most procedures which
depend on systematic approximation of a system. The dilem can be by-
passed by introducing an additional approximation. If G'1 (£,7m) is de-
termined on the basis of ensuring prescribed loads over a portion of the
_boundary only, in many practical problems it can be argued that sufficient
acouracy of solution in these regions is assured if the remaining portions
of the boundary are handled in only an average sense.

To illustrate the argument above, we consider edge loading of the shell
with load-free conditions on the lateral surfaces. It ia a straightforward
matter to show that T!!' + (£/R)T!?! and Tf“ + (f/R)T‘ correspond to
plane self-e?uilibrati'ng load aysgema. On the lateral surfaces of the shell
T!® and T{% vanish, and the conditions on G'!' (£,1) on the lateral
girfaces chn be found from (32) and (33). On the ends, G'1!) (£,7) can be
adjusted to satisfy the edge loading in an average.sense. By appealing
to Saint Venant's prineiple,, this approximation should still yield a
reliable estimate of' the loeal behavior inithe regions of rapidly varying
thickness providedi t!ies‘e'regibnsiare: sufficiently removed from the edges.

THs axiwll foros’ resul tant n " comsistent with (22) for this order
theory is dsfinsd! as:

(H

R! -21rR{ [m (f/R)Tm] (34)

Thie dbfinition of R,' y in addition to being consistent in form with our
plan of successive approximation, enjoys the property of defining the same
total resultant axial force independent of the croes section chosen. This
last property requires that (34) be independent of path when considered a
line integral. It is a straightforward matter to show that (34) meets
these requirements.

The corresponding displacements u''' and' w!l! can be carried out in a
direot manner; however, the details will not be included here.

V. REMARKS ON ORDERS OF THEORY, n>1

For n>1, the approximations can be analyged in a manner similar to
Seoctions III and IV. Again the problem for each order can be resolved into
the determination of a biharmonic stress function along with a particular
solution of (10) in terms of the preceding orders of solution. The deter-
mination of the particular solutions becomes increasingly difficult with
inocreasing n. For example, for n = 2 the particular solution requires a

solution of the Poisaon type differential equation with a righthand side
proportional to F!¢)

o L TR AR
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The indeterminancy of each of the higher orders of solution resembles
the case n = 1. Thus, the plan of enforcing boundary conditions only in
the net sense over a portion of the boundary is again necessary in genersl.

VI. PORMULATION IN TERMS OF COMPLEX VARIABLES

Formulation of the stress functions in terms of analytic functions of
a complex variable will now be carried out to enable use of some of the
elegant techniques invented for plane problems. Since a departure from the
Airy stress function is made, some modification of the conventional complex

‘variable representation will be required. The two orders of solution,

2 = 0and n = 1, will now be formulated in terms of the complex variable,
- f * 1"7'

The biharmonic functions F!®!(£,7) and G'1!(£,7) defined in the pre-
ceding sections can be represented as

1,0 Y
I

" = miT " (1at . (wyatf, (36)

Y« 1 {7 S0 wa e S wadd, (36)

where ¢'*) ({) and ¢!*! ({) are analytic functions of {, "Im" denotes the
imaginary part of the bracketed expression, and bars denote the complex
conjugates. Equations 11 and 35 yield the relations

o_‘lﬂ 10) [¢(°’ a:‘)l’

B A R
a_;ﬂ . v. (o) (N]

Similarly, from (30) and (36) along with (35),

agm ’v;n . [ (1) $:”] _ (l/zR)[C¢m t&{"- ¢';" . W:"].

o;n . o'«,n 247 ‘(;) . -z,[(a _ 41,N,m Z¢;:’ ,.p“' . [ (o) "']/R

(38
v T [(3 SPTTHARS SR 17 R TE IITE AV

0:1) - em cn)_ (1 + )[13:" t¢é” . ¢:n 0?;:" /2R.

=13~
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Curvilinear coordinates can now be introduced by introducing appropriate
conformal mepping functions of a complex variable. Consider an auxiliary
complex plane, the y-plane, where ¥ = € 4 i8, Let

{ = w(y) (39)

denote a conformal mapping of a convenient region in the y-plane into the
region under consideration in the {-plane. Then the analyticity of o181 (L)
and y'2) ({) is preserved when considered as functions of ¥ due to the
analytioity of w(y). The argument is well-known in the conventional complex
variable formulation and the general details will not be reproduced here.

" For reference we shall list several of the more useful relations. If
on the arc A’'B’, we denote

LU/ ge8)
. 7]

L =ds e ® = ds . (40)

then,

T;n . T‘m . -e“[(s- 4v)¢¢m . e-'“(¢‘“’ . ‘m) . r¢‘(:! “ﬁ(:n]'

~ - (41)
T;n ’finm_ -eut(s . 41’)"S‘m . e-:xa(¢:11 . 3‘(1») +Z’¢::' ’¢::v]

(o) (0) 0 A6) )

BT STt AR M V2% B 1~ Sl SR A V21

v fa- 2@ -3 e 1" oY, (42)
R,'," = -2mR RU4(1 - ' s Z'¢é" + w{"}::, (43)
R:,” «-27R R£{4(1 -t e Tyt e ¢:"‘-}::
v (nfe) rtfa(s - o) 16"t - a1 - 918'"- 201 - 2T
v - wenay cwthl, (44)
o 1wy 3w -3 - FY -5 e
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VII. SUMMARY

A plan of successive spproximations for handling the equations oT the
three-dimensional elasticity problem for cylindrical shells with regions
of rapidly varying thickness is proposed along the conceptual lines of
0. G3hner. It is shown that for a restricted but useful class of loadings,

_the utilisetion of plane biharmonic functions can be made; thus, meny of

the tools of complex variable theory can be introduced.

The argument carried out in the preceding sections points up the re-
quirement for relaxing the precise loading conditions over portions of the
shell. This matter is common to all approximate theories of this type,
leading to the well-known separation of solution into the so-called
interior solutions and boundary layer effects.

Finally, although the generally more difficult three-dimensional
problem has been reduced to the determination of plane biharmonic funotions,
the latter matter can provide considerable difficulties in itself.

~18-
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